COURSE DESCRIPTION

This course is a continuation and generalization of the material covered in *Econometrics* (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools to analyze and interpret the empirical relevance of financial and other economic data. Unification of statistics, economic theory, and mathematics constitutes econometrics. Statistics, economic theory, and mathematics are a necessary, but not singly a sufficient, condition for a real understanding of the quantitative relations in modern economic life. In this course students will develop advanced econometric tools and strategies for their use in empirical finance and economics research. In particular, the course will provide students with a working knowledge of asymptotic statistical methods and the application of these statistical concepts to study large-sample properties of estimators (defined as the solution to an optimization problem, under various assumptions regarding the true data generating process). These large sample results will be applied to linear and nonlinear (in parameters) generalized least squares (GLS) and maximum likelihood (ML) estimators. These results are extended to develop a nonlinear instrumental variables estimator, the generalized method of moments (GMM) and various asymptotic testing procedures are derived for this general modeling framework. Panel data, simultaneous equations, discrete dependent, limited dependent and duration models and their application are covered.

COURSE MATERIALS

(HBE) *Handbook of Econometrics* Volumes 1-6, North-Holland, various years.

CT, G, and H will serve well for introductory and background material for the topics listed below. HBE surveys various topics and provides references to further literature. Other econometrics and related empirical articles from the economics and finance literature will be assigned. Students are encouraged to seek out whatever other reference material facilitates their learning of each topic.
Topics

1. Introduction and overview
2. Nonspherical disturbances, White, Newey-West, GLS, FGLS, and ML
3. Panel Data
4. Systems of Regression Equations
5. Simultaneous Equations Models
6. Nonlinear Regression Models
7. GLS, FGLS, and ML
8. QML and GMM
9. Estimation Frameworks, Estimators
10. Models with Discrete Dependent Variables
11. Limited Dependent Variable and Duration Models
12. Discrete-Continuous Models
13. Review, further applications
14. Final Exam

Other topics, depending on class interests, may be added as time permits.

You will be required to carry out econometric computations using data with assigned problems. You are free to choose any computational software that allows you to carry out the required estimates. (Note that you may be asked to defend the accuracy of your chosen software.) Examples used in class will primarily be computed using STATA, LIMDEP (NLOGIT), SAS, or Mathematica. There are many other excellent packages available (e.g., R).

You are responsible for all problems and problem sets assigned in class, which you may be asked to demonstrate in class or may be randomly collected and graded. Presentations, class participation, quizzes and graded problems will comprise 50% of your grade, and the final exam 50%.

ACADEMIC INTEGRITY

I do NOT tolerate cheating. Students are responsible for understanding the RU Academic Integrity Policy (http://academicintegrity.rutgers.edu/files/documents/AI_Policy_2013.pdf). I will strongly enforce this Policy and pursue *all* violations. Don’t let cheating destroy your hard-earned opportunity to learn. See business.rutgers.edu/ai for more details.