Course Description
In this introductory course to Supply Chain Analytics, I will take you on a journey to this fascinating emerging area of integrating data analytics with supply chain management via tools such as Excel and Python. I will show you real life stories and examples to demonstrate how analytics can be applied to various domains of a supply chain to generate a significant social and / or economic impact. I will also talk about the job market trend, job requirement and preparation. Supply Chain Analytics is a fast developing area. Thus this course is by no mean exhaustive. My goal of this course is to open the eyes of the learners to the impact and some essential skills of Supply Chain Analytics, and hopefully this will encourage you to learn more. At the end of the course, you will practice the skills learned by doing a real-life data driven project in the area of supply chain management.

Pre-requisite
• 799:301: Introduction to Supply Chain Management

Learning Goals and Objectives
The objective of the course is to introduce data-driven models, skills and tools so that the learners can manage supply chains efficiently and effectively. Specific objectives include
• Providing an overview of supply chain intelligence and analytics as applied in today’s global marketplace.
• Developing critical thinking in support of competition strategies in supply chain management.
• Enhance essential data analytics skills in various domains of a supply chain, including sales and operations planning and sourcing.

Textbook
A Course-pack is required for the course, which includes required simulation and reading materials.

Software
In this course, we will use Microsoft Excel, Tableau and/or Python (Anaconda). Either Excel 2003, 2007 or 2010 will be fine. Please install the following Excel Add-Ins before class starts: “Analysis ToolPak”.

Teaching Method
The course will be taught using PowerPoint presentations and instructional simulation. In each week, we will complete one lecture and all the associated readings, simulation, exercises and homework (see attached schedule). Class-related material (lecture notes, videos, homework and solutions, etc.) will be posted online. Students should be enrolled to access the posted materials.

Grading
A mid-term exam will cover the first half of the course’s materials. In addition, there will be homework assignments and a term project with an in-class presentation (see term project). The weights for course work components are given below.
Homework Assignment
Homework assignments should be typed and handed in paper copies in class. Be sure to put your name and contact information (email and optional telephone) on all homework submitted. Team work is expected for some assignments (to be specified in lectures), but team members must specify on the homework the percentage of work done by each of its members (for example, if everyone contributes equally in a 4-student team, then the percentage of work done by each student is 25%).

Assignments of a class are due by the next class, unless otherwise stated. Penalty for late submission (within 1 week) is 40% of the points allocated to the assignment. Submission will not be accepted if it is more than 2 weeks late.

Simulation Assignment
Please write down the most compelling learnings from the in-class simulation (for each simulation) and provide any feedback and suggestion that you may have. This is a group assignment, and it follows the same rule on the due date and late submission as the homework assignments.

Project & Presentation
A term project on a supply chain analytics-related topic is a necessary part of the course. Each project should be a team effort of 4-5 people assigned by the instructor in the first two weeks. Each project team will select a topic of interest (following the guidelines listed below), make a proposal (on the story, the problem, and your solution approach) and make a thorough presentation for about 10-15 minutes towards the end of the semester (see weekly schedule for dates). Every team member must present (detailed requirements for the project are noted below). Each team member must specify his/her percentage of contribution on the final submitted work. The project will be graded as a whole but each team member’s grade also depends on his/her contribution.

Select one of the two formats below (an analytics-case or technology), and follow carefully the reporting instructions. If you want to do a project that does not obviously fall within the suggested categories, please contact me for permission. In any event, please select a topic that will be a benefit to the class. You may be as original and creative about the topic as you can be, but please keep your fellow classmates in mind.

I. Supply Chain Analytics-Case
Describe the application of analytics to a real-life supply chain problem by presenting the story, data and facts, and applying the methods/tools of this class. Please also include and be prepared to discuss implementation issues. You can draw on your own work experience (that would likely be most interesting to the class) or study a case appeared in the literature or press. Avoid the very popular press or a shallow source. Rather, look for a serious professional article, such as a financial magazine (Wall Street Journal, New York Times, BusinessWeek), economics magazine, or a trade magazine (Sloan Management Review, Supply Chain Management Review, Inbound Logistics, etc.).

II. Supply Chain Analytics-Technology
First, select a novel data analytics and/or science technology, software or platform (for short, technology), and describes its contribution (or projected contribution) to the current state of art. It would be most
useful if you have been exposed to the technology on your job, and can report on first hand. Examples of interest are big-data collection, processing, analyzing and visualization tools, software packages and platform, new practices of applying data analytics to supply chain operations, or anything else that is of interest to you and would likely interest class members, but within the domain of supply chain analytics. If in doubt, contact me.

Second, research the current state of the chosen technology and summarize it in your report. Find out the current or emerging commercial “players”, and look at their future technological directions. Based on at least three sources (ordinary articles or Web pages, to be referenced in your report), address at least the following points using data and facts:

- What are the key technical and economical aspects of the technology which benefit the marketplace (consumers of this technology, both individual and corporation)?
- Who are the current “movers and shakers” in this area? Compare and contrast their technological and business approaches, products, etc.
- What are the current impediments to their approaches for acceptance in the marketplace? Examples are functionality, ease of use, price, technological longevity, etc.

Third, based on the current state of the technology, express your personal opinion and conclusions on the future of the chosen technology and its applications. Make sure your arguments are logical and backed by your research; you are encouraged, however, to voice opinions gleaned from your personal “crystal ball” (convictions and intuition), but be reasonable (and brief…). You may attach to your report supporting material, such as graphs and charts. Remember, anybody can collate material from the Web, but it is more difficult to analyze such material and reach conclusions. Analysis and conclusions will be the components of your term project most heavily weighted.

Note: You should not cut-and-paste verbatim material from Web pages or copy verbatim material from any other sources, unless you use that material as exact quotes. In that case be sure to enclose any pasted text material in double quotes and to provide an exact reference for it! All pasted graphs and charts should also be properly referenced. If you are unsure about referencing materials, please see the Academic Integrity information on Blackboard and/or the Academic Integrity at Rutgers webpage.

III. Submission
The project is due in the last week of the course (see weekly schedule). We will have in-class presentations so that teams can learn from each other. Prior to the presentation, each team should submit three (3) documents through Blackboard:

1. A PowerPoint file for the presentation.
2. A Word document that includes background, assumptions, models / plans, the analysis and solution / estimates, the interpretation and citations.
3. An Excel file, Tableau files or R/Python code with all data and calculations.

A space will be created in the Assignment area of Blackboard where your project documents are to be submitted.

Academic Integrity
I will strongly enforce this Policy and pursue all violations. On all examinations and assignments, students must sign the RU Honor Pledge, which states, “On my honor, I have neither received nor given any unauthorized assistance on this examination or assignment.” [I will screen all written assignments
SafeAssign or Turnitin, plagiarism detection services that compare the work against a large database of past work.] Don’t let cheating destroy your hard-earned opportunity to learn. See business.rutgers.edu/ai for details.

Disability Assistance

If you are a military veteran or are on active military duty, you can obtain support through the Office of Veteran and Military Programs and Services. http://veterans.rutgers.edu/

If you are in need of mental health services, please use our readily available services.
[Rutgers University-Newark Counseling Center: http://counseling.newark.rutgers.edu/]
[Rutgers Counseling and Psychological Services – New Brunswick: http://rhscaps.rutgers.edu/]

If you are in need of physical health services, please use our readily available services.
[Rutgers Health Services – Newark: http://health.newark.rutgers.edu/]
[Rutgers Health Services – New Brunswick: http://health.rutgers.edu/]

If you are in need of legal services, please use our readily available services: http://rusls.rutgers.edu/

If you are in need of additional academic assistance, please use our readily available services.
[Rutgers University-Newark Learning Center: http://www.ncas.rutgers.edu/rlc
[Rutgers University-Newark Writing Center: http://www.ncas.rutgers.edu/writingcenter
[Rutgers University-New Brunswick Learning Center: https://rlc.rutgers.edu/]

Class Schedule (tentative)

<table>
<thead>
<tr>
<th>Sessions</th>
<th>Topics covered</th>
<th>Assignments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction
Course policy & preview; self-introduction & group, job opportunities</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Overview of Supply Chain Analytics
Supply chain domains and pain points, overview of analytics applications to various supply chain domains.</td>
<td>• HW 1 assigned</td>
</tr>
<tr>
<td>3</td>
<td>Measuring Supply Chain Metrics
Little’s Law, inventory turns, cash cycle, KPIs and benchmarking</td>
<td>• HW 1 due
• HW 2 assigned</td>
</tr>
<tr>
<td>4</td>
<td>Business Intelligence and Competitive Analysis
Geographic business information, Industry analysis, value chain analysis, competitive positioning, breakdown and value driver analysis</td>
<td>• HW 2 due
• HW 3 assigned</td>
</tr>
<tr>
<td>5</td>
<td>Inventory Analytics
Inventory benchmarks, link inventory to financial performance, ABC analysis</td>
<td>• HW 3 due
• HW 4 assigned</td>
</tr>
<tr>
<td>6</td>
<td>Sourcing Analysis
Procurement challenges, spend analytics, supplier management, AI in procurement</td>
<td>• HW 4 due</td>
</tr>
<tr>
<td>7</td>
<td>Machine Learning for Supply Chain Planning
Machine learning techniques for better forecasting and planning of demand, inventory and supply, example: All-Clad.</td>
<td>• HW 5 assigned</td>
</tr>
<tr>
<td>8</td>
<td>Natural Language Processing (Python I)
Buying process, human factors, Python – Anaconda</td>
<td>• Python – Anaconda installation and basics</td>
</tr>
<tr>
<td>9</td>
<td>Natural Language Processing (Python II)
Supplier / customer profiling, customer review analysis</td>
<td>• HW 6 assigned</td>
</tr>
<tr>
<td>10</td>
<td>Natural Language Processing (Python III)
Topic modeling, customer review analysis</td>
<td>• HW 6 due</td>
</tr>
<tr>
<td>11</td>
<td>Project Proposal Presentation</td>
<td>• Project proposal due</td>
</tr>
<tr>
<td>12</td>
<td>Shortage Gaming and Inventory Rationing
Game: Hunger chain simulation. Case: Pandemic Influenza</td>
<td>• Reading: Shortage gaming
• Simulation assignment due</td>
</tr>
<tr>
<td>13</td>
<td>Student Project Presentation</td>
<td>• Project due</td>
</tr>
<tr>
<td>14</td>
<td>Final examination</td>
<td></td>
</tr>
</tbody>
</table>